The “A” in TIAC is for...

ASSERTIVE!
Le ‘A’ en ACIT est pour…

ASSURÉ!
We’ll be looking at...

- ASHRAE 90.1-2010
- NECB-2015
- NBC-2010
- NPC-2015
- What’s wrong with this picture?
- Water/Energy Nexus
- Legionella Disease
- TIAC O&M Inspection Protocol
Changing the conversation…

- What is important in the smooth operation of your facility?
- What are your benchmarking goals?
- What keeps you up at night?
- Specifications.
Newly joined

- ASHRAE Cold Climate Building Committee
- Canadian Pipeline Energy Association
Let’s have a meeting...
TABLE 6.8.3A Minimum Pipe Insulation Thickness

Heating and Hot Water Systems

(Steam, Steam Condensate, Hot Water Heating and Domestic Water Systems)

<table>
<thead>
<tr>
<th>Fluid Operating Temperature Range (°C) and Usage</th>
<th>Conductivity, W/(m°C)</th>
<th>Mean Rating Temperature, °C</th>
<th>Nominal Pipe or Tube Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>177 °C</td>
<td>0.046–0.049</td>
<td>121</td>
<td><25</td>
</tr>
<tr>
<td>122–177 °C</td>
<td>0.042–0.046</td>
<td>93</td>
<td>25 to <40</td>
</tr>
<tr>
<td>94–121 °C</td>
<td>0.039–0.043</td>
<td>66</td>
<td>40 to <100</td>
</tr>
<tr>
<td>61–93 °C</td>
<td>0.036–0.042</td>
<td>52</td>
<td>100 to <200</td>
</tr>
<tr>
<td>41–60 °C</td>
<td>0.032–0.040</td>
<td>38</td>
<td>≥200</td>
</tr>
</tbody>
</table>

- Insulation Thickness (mm)
 - For insulation outside the stated conductivity range, the minimum thickness (T) shall be determined as follows: \(T = T_m (1 + 0.0016 k) \), where \(T_m \) = minimum insulation thickness (mm), \(T_m \) = insulation thickness listed in this table for applicable fluid temperature and pipe size, \(k \) = conductivity of aluminum expressed as mean rating temperature indicated for the applicable fluid temperature (W/(m°C)), and \(k \) = the upper value of the conductivity range listed in this table for the applicable fluid temperature.

- These thicknesses are based on energy efficiency considerations only. Additional insulation is sometimes required relative to safety, ice formation, surface temperature.

- For piping smaller than 80 mm and where exposed to ultraviolet radiation, reduction of these thicknesses by 25 mm shall be permitted before thickness adjustment required in footnotes below 25 mm.

- For direct-buried heating and hot water system piping, reduction of these thicknesses by 40 mm shall be permitted before thickness adjustment required in footnotes below 25 mm.

- The table is based on steel pipe. Non-metallic pipe schedule 40 thicknesses or less shall use the table values. For other non-metallic piping having thermal resistance greater than that of steel pipe, reduced insulation thicknesses are permitted if documentation is provided showing that the pipe with the proposed insulation has no more heat transfer per foot than a steel pipe of the same size with the insulation thickness shown in the table.

TABLE 6.8.3B Minimum Pipe Insulation Thickness

Cooling Systems (Chilled Water, Brine, and Refrigerant)

<table>
<thead>
<tr>
<th>Fluid Operating Temperature Range (°C) and Usage</th>
<th>Conductivity, W/(m°C)</th>
<th>Mean Rating Temperature, °C</th>
<th>Nominal Pipe or Tube Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4–15 °C</td>
<td>0.030–0.039</td>
<td>24</td>
<td><25</td>
</tr>
<tr>
<td>>0 °C</td>
<td>0.029–0.037</td>
<td>10</td>
<td>25 to <40</td>
</tr>
</tbody>
</table>

- Insulation Thickness (mm)
 - For insulation outside the stated conductivity range, the minimum thickness (T) shall be determined as follows: \(T = T_m (1 + 0.0016 k) \), where \(T_m \) = minimum insulation thickness (mm), \(T_m \) = insulation thickness listed in this table for applicable fluid temperature and pipe size, \(k \) = conductivity of the material at mean rating temperature indicated for the applicable fluid temperature (W/(m°C)), and \(k \) = the upper value of the conductivity range listed in this table for the applicable fluid temperature.

- These thicknesses are based on energy efficiency considerations only. Issues such as vapor permeability, surface condensation, and esthetics require a careful evaluation.

- The table is based on steel pipe. Non-metallic piping schedule 40 thicknesses or less shall use the table values. For other non-metallic piping having thermal resistance greater than that of steel pipe, reduced insulation thicknesses are permitted if documentation is provided showing that the pipe with the proposed insulation has no more heat transfer per foot than a steel pipe of the same size with the insulation thickness shown in the table.
Clarification on pipe and duct insulation *installed* and *full* thickness.

Adopted modified ASHRAE 90.1-2010 minimum pipe insulation thicknesses.

No credit for claimed insulation value of plastic pipe.
5.2.6.2.

8) The insulation thickness used to determine compliance with Table 5.2.5.3. shall be the thickness of the insulation after installation. (See Note A-5.2.2.5.(2), 5.2.5.3.(8) and 6.2.3.1.(6.).)

Table 5.2.5.3.
Minimum Thickness of Piping Insulation
Forming Part of Sentences 5.2.5.3.(1), (3) to (5), and (8)

<table>
<thead>
<tr>
<th>Type of System</th>
<th>Design Operating Temperature Range, °C</th>
<th>Thermal Conductivity of Insulation</th>
<th>Nominal Pipe Diameter, mm (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Conductivity Range, W/m·°C</td>
<td>Mean Rating Temperature, °C</td>
</tr>
<tr>
<td>Heating Systems (Steam, Steam Condensate and Hot Water)</td>
<td>> 177</td>
<td>0.046-0.049</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>122-177</td>
<td>0.042-0.045</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>94-121</td>
<td>0.039-0.043</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>61-93</td>
<td>0.036-0.042</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>41-60</td>
<td>0.035-0.040</td>
<td>38</td>
</tr>
<tr>
<td>Cooling Systems (Chilled Water, Brine and Refrigerant)</td>
<td>4-16</td>
<td>0.030-0.039</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>< 4</td>
<td>0.030-0.039</td>
<td>24</td>
</tr>
</tbody>
</table>

Notes to Table 5.2.5.3.:
(1) Refers to runouts to individual terminal units not exceeding 3.7 m in length.
NECB-2015 Duct Insulation

5.2.2.5. Duct and Plenum Insulation

1) Except as provided in Sentences (3) to (6), all air-handling ducts, plenums and run-outs forming part of a heating, ventilating, or air-conditioning system shall be thermally insulated in accordance with Table 5.2.2.5.

2) The insulation thickness used to determine compliance with Table 5.2.2.5. shall be the thickness of the insulation after installation. (See Note A-5.2.2.5.(2), 5.2.5.3.(8) and 6.2.3.1.(6).)

Table 5.2.2.5.
Insulation of Ducts
Forming Part of Sentences 5.2.2.5.(1) and (2)

<table>
<thead>
<tr>
<th>Temperature Difference,(^{(1)}) °C</th>
<th>Minimum Thermal Resistance of Ducts and Plenums, m²-°C/W</th>
<th>Minimum Thermal Resistance of Run-outs,(^{(2)}) m²-°C/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5 to 22</td>
<td>0.58</td>
<td>0.58</td>
</tr>
<tr>
<td>> 22</td>
<td>0.88</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Notes to Table 5.2.2.5.:

\(^{(1)}\) Refers to the temperature difference at design conditions between the space within which the duct is located and the design temperature of the air carried by the duct. Where a duct is used for both heating and cooling purposes, the larger temperature difference shall be used.

\(^{(2)}\) Refers to ducts not exceeding 3 m in length that connect to terminal grilles or diffusers.
The not-so-fine print

<table>
<thead>
<tr>
<th>Type</th>
<th>Labeled Thickness in</th>
<th>mm</th>
<th>Installed “R”** (hr*ft²•°F)/Btu</th>
<th>m²•°C/W</th>
<th>Out-of-Package “R” (hr*ft²•°F)/Btu</th>
<th>m²•°C/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 75 - 0.75 pcf (12kg/m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>1½</td>
<td>38</td>
<td>4.2</td>
<td>0.74</td>
<td>5.2</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>51</td>
<td>5.6</td>
<td>0.99</td>
<td>6.9</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>2 ½</td>
<td>56</td>
<td>6.0</td>
<td>1.08</td>
<td>7.5</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>76</td>
<td>8.3</td>
<td>1.46</td>
<td>10.3</td>
<td>1.81</td>
</tr>
<tr>
<td>Type 100 - 1.00 pcf (16kg/m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1½</td>
<td>38</td>
<td>4.5</td>
<td>0.79</td>
<td>5.6</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>51</td>
<td>6.0</td>
<td>1.06</td>
<td>7.4</td>
<td>1.30</td>
</tr>
<tr>
<td>Type 150 - 1.5 pcf (24kg/m³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>1½</td>
<td>38</td>
<td>4.7</td>
<td>0.83</td>
<td>6.0</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>51</td>
<td>6.3</td>
<td>1.11</td>
<td>8.0</td>
<td>1.41</td>
</tr>
</tbody>
</table>

**Installed R-value calculated with a material thickness compressed to a maximum of 25% following recommended duct wrap stretch-outs.
5.2.2.5. Duct and Plenum Insulation

8) Manufactured insulation thickness shall not be altered.

5.2.5.3. Piping Insulation

8) The insulation thickness used to determine compliance with Table 5.2.5.3. shall be the thickness of the insulation after installation.
A-5.2.2.5.(7) and 5.2.5.3.(7) Installation. For the purposes of Sentences 5.2.2.5.(7) and 5.2.5.3.(7), “good practices” includes the TIAC “Mechanical Insulation Best Practices Guide.”
National Building Code of Canada-2010

- National Building Code of Canada-2010 requires surface temperature not to exceed 70C (158F).

 - At 70C (158F) and with skin exposure of 1 second, “Complete Transepidermal Necrosis (Cell Death)”.
 - TIAC proposes a more reasonable and safer maximum temperature is 40C (104F).
Frying Eggs?
“The NPC establishes requirements to address the following four objectives, which are fully described in Division A of the Code:”

- safety
- health
- protection of buildings and facilities from water and sewage damage
- environment
National Plumbing Code of Canada-2015

TIAC submission:

“The design, configuration and installation of piping systems and related fittings and supports shall comply with the intent of NECB-2015, Sections 5.2.2.5.8), 5.2.5.3., 5.2.5.3.8) and 5.2.5.4.1).”
Clearance! Clearance! Clearance!
What’s wrong with this picture?
What’s wrong with this picture?
What’s wrong with this picture?
Pipe support with high density insulation

Pipe Supports, Guides, Shields & Saddles

Size Range: Up to 24" (600mm)
Material: Asbestos-free, Hydrous Calcium Silicate Insulation with Pre-Galvanized steel jacket
Function: Designed to provide a crush resistant insulation insert at pipe support points. Can be used with hangers or straps. Standard type has functionality for both chilled water and hot water.
Miscellaneous Information: Flame retardant, water and rot resistant, temperature range from -20°F (-29°C) to 1200°F (649°C). Easily installed in a pipe hanger or mounted to strut.
Order By: Part number. (See part number legend below.) For additional information, contact factory.

Applications
Pipe Hanger
Strut Mounted
Design/Application Considerations
We’ve been experimenting...
PHIGENICS
Things don’t always work out

- Wolseley Canada
- M. A. Stewart & Sons Ltd.
- Canadian Institute of Plumbing and Heating (CIPH)
- The Heating, Refrigeration & Air-conditioning Institute of Canada (HRAI)
- BOMA Canada & BOMA U.S.
- Milwaukee Valve Company Ltd.
- Mechanical Contractors Association of Canada (MCAC)
Benchmarking

Establishing a baseline of energy and water consumption with the intention of certifying measurable improvements.
Government of Ontario

ONTARIO REGULATION 20/17 made under the

GREEN ENERGY ACT, 2009
Made: February 2, 2017
Filed: February 6, 2017
Published on e-Laws: February 6, 2017
Printed in The Ontario Gazette: February 25, 2017

REPORTING OF ENERGY CONSUMPTION AND WATER USE
The Water/Energy Nexus

The American Society of Plumbing Engineers

10 seconds or less – Acceptable

11 to 30 seconds – Marginal

31 seconds or more – Unacceptable

The Water/Energy Nexus
Texas A & M University is located about 90 miles NW of Houston.

“DHW system is over 12 miles long. It serves 71 buildings and is part of a 45MW co-gen system.”

“Savings of about $572,300.00 annually”
The Water/Energy Nexus

“The best improvement for a DHW system would be a combination of improved insulation and reduced circulation flow rate.”*

Legionella

Legionellae Growth Chart

Ideal growth range 95-115°F

Legionellae growth range 68-122°F

Rapid Kill Range 158-176°F

Below 68°F, Legionellae can survive but are dormant. Cold water in storage tanks, piping, decorative fountains, and other equipment should ideally be kept below 68°F.

140°F Legionellae die within 32 minutes

131°F Legionellae die within 5-6 hours

Above 122°F Legionellae can survive but do not multiply

Hot water need capability of heating water to 158°F for disinfection

151°F Legionellae die within 2 minutes
Legionella and pipe insulation

- **ASHRAE 188-2015**
 - 8.2.1.g. “...material specifications for all water systems insulation.”

- **OSHA**
 - Section II C-1: “Proper insulation of hot water and heat tracing of lines can help maintain distribution and delivery temperatures at 50°C (122°F).

- **Health and Safety Executive (UK)**
 - “…adequately insulating pipes and tanks;”
Mechanical Insulation Design Guide

- MIDG – Calculator Tools

- Temperature drop for air in an insulated duct or fluid in an insulated pipe.
Cost of Owning a Building

Unqualified contractor!
Unqualified contractor!
What to do?

 Specifications
- Prequalify contractors.
- Recognized trade school certification.
- Apprenticeship programme.
- Experienced supervision
- Red Seal
- BCICA/“QAP”.
When Specifications Don’t Work

- Calgary Hockey Arena
- Roof Duct:
 - 36” x 36”
 - 2.25 pcf rigid-2 layers 2”, pinned.
 - .020 stucco embossed aluminum.
 - Mastic sealant.
 - Penetrations-structural supports.
TIAC O&M Mechanical Insulation Inspection Protocol

- Understand how to self-assess deficiencies.
- Observations during normal inspection procedures.
- Quantify observations and measurements.
- Decide how to proceed.
- Initially little or no cost involved.
3E Plus
www.pipeinsulation.org
Free Calculator Tool

- Energy
 - Optimize insulation thickness.
 - What if’s.

- Economics
 - Payback.

- Environmental
 - GHG emission reductions: CO$_2$, No$_x$ & Carbon Equivalent (CE).
Insulation Thickness Computer Program

FEATURES:

- Able to retain user installed data when updating the program
- Contains updated thermal data for insulation materials
- Exports data to spreadsheets for further analysis
- Automatically calculates thickness tables
- Simple payback calculations
- New user interface
- Improved report formats
- Calculates in both metric and inch-pound units
- Ability to add custom fuels
- Calculates multiple insulation layers

Calculates The Savings For A Range of Insulation Thicknesses

Energy Savings • Economic Savings • Environmental Savings

www.PipeInsulation.org
Mechanical Insulation Design Guide (MIDG) Free Calculator Tool

- www.wbdg.org/design/midg_calculators.php
 - CONDENSATION CONTROL CALCULATOR – HORIZONTAL PIPE.
 - ENERGY LOSS, EMISSION REDUCTION, SURFACE TEMPERATURE, AND ANNUAL RETURN.
 - FINANCIAL RETURNS.
 - ESTIMATE TIME TO FREEZING FOR WATER IN AN INSULATED PIPE.
 - PERSONNEL PROTECTION CALCULATOR FOR HORIZONTAL PIPING.
 - TEMPERATURE DROP FOR AIR IN AN INSULATED DUCT OR FLUID IN AN INSULATED PIPE.
Changing the conversation...

We, as a national trade association have to become more assertive.

TIAC’s members are at the vanguard on moving the needle forward.

No one else will do for us what we have to do for ourselves.
Thank you

☐ Steve Clayman
 ■ steve.clayman@tiac.ca
 ■ 416-606-1512

☐ Thermal Insulation Association of Canada
 ■ www.tiac.ca
 ■ Tel: 613-724-4834
 ■ Fax: 613-729-6206